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Abstract. The net absorption coefficient for multiphoton inverse bremsstrahlung is evaluated 
in closed form in the limit hw << kTover the full range of photon flux intensity. Weak- and 
strong-field expansions are presented and numerical results displayed. 

1. Introduction 

In  laser-driven fusion experiments, the incident photon energy flux can be sufficiently 
high that nonlinear electromagnetic effects need be considered. The most direct of these 
is the multiphoton extension of the inverse bremsstrahlung process. Its explicit evalua- 
tion is a necessary first step to an understanding of laser absorption, providing the 
reference line from which to assess the possible impact of other, less well understood 
mechanisms. Inverse bremsstrahlung involves three characteristic energies : the photon 
energy ho, the electron temperature kT and the ‘quivering energy’ E, = im(eE/mo)2 
with the mean-square electric field intensity E2 = 4 d / c  where I is the irradiance; i t  is 
convenient to use the two dimensionless ratios x = E,/2kT and y = ho/2kT. In laser 
fusion experiments, y is very small after the initial stage of plasma formation (typically, 
ho is about one eV for a Nd-glass laser while kT is several keV). This initial stage will 
not be discussed further here as it involves altogether different phenomenology in that 
the ionization is low, the counterpart atomic problem is quite different and more com- 
plicated (see the review article by Lambropoulos and Lambropoulos 1975) and other 
mechanisms such as impact ionization and charge exchange are important. The purpose 
of this paper is to calculate the net absorption coefficient for multiphoton inverse 
bremsstrahlung (more exactly, its ratio to the weak-field limit) for small y and the full 
range of x. 

Multiphoton inverse bremsstrahlung and cognate matters have been a popular 
subject (Rand 1964, Silin 1965, Bunkin and Fedorov 1966, Hughes and Nicholson- 
Florence 1968, Brehme 197 1 ,  Nicholson-Florence 197 1 ,  Pert 1972, Osborn 1972, Seely 
and Harris 1973, Kroll and Watson 1973, Geltman and Teague 1974) but most of the 
interest has been in establishing the formalism at varying levels of sophistication, 
classically or quantum mechanically, and explicit results for the absorption coefficient 
are relatively meagre. For weak fields, apart from the verification of the single-photon 
limit, there is only a first-order correction for small y (Osborn 1972). (Rand (1964) and 
Bunkin and Fedorov (1966) quote first-order corrections in various limits to the cross 
section for an electron of given energy and direction.) For strong fields, some asymptotic 
results are given. Hughes and Nicholson-Florence (1968) obtain semi-quantitatively 
from Rand’s treatment both the large- and small - y  limits. They also derive an alternative 
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strong-field model which arrives at a different answer but which has subsequently been 
amended (Nicholson-Florence 197 1, Pert 1972), reconciling the conflict. Pert (1972) 
independently verifies the Rand-Hughes result and gives a qualitative discussion of the 
variation of the Coulomb collision logarithm with various parameters. A calculation of 
the effect of a high-frequency field on the plasma conductivity by Silin (1965) yields an 
effective collision frequency which is directly pertinent to the bremsstrahlung problem. 
He quotes a large-x and (effectively) small-y limit. All of the above asymptotic results 
behave as x - ~ ' '  In x with minor variations in the numerical coefficient and in the form 
of the collision logarithm (consistent within the level of rigour) for small y and not very 
differently for large y. On the other hand, the heuristic evaluation of the asymptotic 
limit for small y of Osborn (1972) lacks the In x factor, as does the Seely and Harris 
(1973) result for large y which further omits the collision logarithm. No explicit inter- 
mediate-field expressions exist, though Silin (1965) quotes an integral representation 
for which he tabulates some numerical values. (Nicholson-Florence (197 1) integrates 
the Bunkin and Fedorov (1966) cross sections numerically to obtain the n-photon net 
absorption coefficients (for n = 1-4) for an electron of given energy over what amounts 
to a considerable range in x and y.) 

2. Evaluation of multiphoton correction factor to inverse bremsstrahlung absorption 
coefficient 

Osborn (1972) transforms the usual momentum-space integral to a double infinite sum 
involving modified Bessel functions. Rewritten in terms of x and y and corrected for a 
typographical error, his equation (23) reads 

( - + 2k) ! m m 
F =  nsinhny 1 

s i n h ~ K ~ ( ~ ) n = l  k E 0  (2n+2k+ 1)(2n + k)![(n+ k ) ! ] ' k !  

with F the ratio of the multiphoton absorption coefficient to its weak-field (single-photon) 
value. Using j = n + k - 1 as index instead of k and interchanging the order of sum- 
mation, equation (1) becomes 

(x /2y ) j  j + l  ( -  1)'+'-"(2j+2)! f '  c nj+ ' sinh nyKj(ny). (2) 
3 F =  

~ i n h y K ~ ( y ) ~ = ~ ( 2 j + 3 ) [ j + l ) ! ] ~ ~ = ~  ( j + l + n ) ! ( j + l - n ) !  

The j = 0 term is, of course, 1. The modified Bessel functions 
(Abramowitz and Stegun 1964) 

can be expanded as 

(3) 

for j > 0 (and also for j = 0 with the first sum omitted). In the small-y limit, the last 
sum is clearly of order yj whereas the middle term is of order yj In y, since 
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and hence larger. The first sum is dominant in equation (3) ,  but its leading contribution 
vanishes in the sum over n :  expanding sinh ny in odd powers (21+ 1) of ny, and abbrevi- 
ating 2i 21+2k+2, the n summation is 

( 2 j + 2 ) ! ( j +  1 - m ) 2 i  
n =  1 ( j +  1 +n) ! ( j+  1 -n)! 2 m = O  m !(2j + 2 - m) ! ' 

1 Z j + 2  (2 j  + 2)  !n2 j +  1 

( - i ) j+l-n = -  1 ( - 1 y  

This sum has been evaluated in a statistical theorem (Feller 1957) as 
n 

C ( - I )"m'n! /m!(n-m)!  = 6,,n!, k d n, 
m = O  

so that equation ( 5 )  vanishes if i < j + 1. The remaining contribution from the first sum 
in equation ( 3 )  is thus comparable to that from the last sum. Upon retaining only the 
dominant term in In y, using equation (4), and performing the n sum as in equations ( 5 )  
and (6) ,  F reduces to 

On applying the duplication formula for 
the generalized hypergeometric series 

, 2 9 2 3  9 x) 

functions, equation (7) can be identified as 

( 5  F = 2F2($ 2.3 2 .  - 

which converges absolutely for all x. 
Equation (8) is the small-y limit of the solution to equation (1) for arbitrary finite x. 

That does not ensure, however, that, for small but finite y, an unrestricted large-x limit 
applied to equation (8) will yield the corresponding solution to equation ( l ) ,  as the F ( x )  
of equation (8) decreases with x and the higher-order terms in y might conceivably 
overtake i t .  This issue has not been resolved in principle because the asymptotic limit 
in x for fixed y of equation (1) has not been obtained, nor indeed even the asymptotic 
limit of the next order term in y. The latter term (of the form -f(x)/ln y )  has, however, 
been evaluated numerically for x up to 15 (beyond which the round-off error is over- 
whelming). The value of f ( x )  rises from 0 at x = 0 to 0.28 at x = 3 and then declines, 
albeit a bit more slowly with x than F(x). At x = 15, f (x)  cr 1.7 F(x). For a Nd-glass 
laser and kT 3 keV, x = 15 corresponds to an irradiance of about lo '* Wcm-2, a 
couple of orders of magnitude above curient peak values. 

3. Integral representation of F and asymptotic value 

A complementary approach is to use judicious differentiation of equation (7) to obtain 

d 
dx tx- 1 i z  -(x3'*F) = ,F1($; 2 ;  -x) = e-"'2(Io(x/2)-Il(x/2)) (9) 

from the properties of the confluent hypergeometric functiom and the modified Bessel 
functions (Abramowitz and Stegun 1964). The integral representation 

F = $ x - ~ "  Jox y1I2 dy exp( - y / 2 ) ( I O ( y / 2 ) -  11(y/2)) 
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follows immediately. This agrees precisely with the Silin (1965) expression, a remarkable 
result in view of the lack of resemblance between the formulations and solutions. The 
putative validity constraints of the two derivations do  not coincide but appear to be 
compatible. Silin's conditions are 

(11) 

with U, the thermal velocity and the b's limiting impact parameters in the collision 
logarithm expressed as ln(bmaJbmi,). In the range of plasmas of interest for laser-driven 
fusion, bmin is the de Broglie wavelength, b,,, the ion-electron Debye length (Brysk et al 
1975). The outer inequality in equation (1 1) thus reduces to ho << kTor y << 1, in agree- 
ment with the present work. The meaning of the left-side inequality in equation (1 1)  
is less clear (if not counter-intuitive); it can be relaxed in Silin's derivation of equation 
(IO).  The issue is not really relevant in the present context, as the collision logarithm of 
the conductivity calculation is supplanted by a Gaunt factor for bremsstrahlung (which 
is a different function). 

The behaviour of F for large x is not easily discerned from equation (lo), aiid numerical 
integration over a wide range of values of x is rather tedious. I t  is both more instructive 
and more convenient to  resort to  the asymptotic representation of F.  The 2F2 of equation 
(8) is a degenerate form not reducible to  a Meijer G function, hence not susceptible to 
the standard asymptotic techniques (and expected to include a logarithmic term). The 
evaluation is achieved with the artifice of inserting a factor y - f  into the integrand of 
equation (10) and reverting to  the confluent hypergeometric function of equation (9). 
The definite integral is then known (Magnus er a1 1966), 

0 << vtlbmax < vtlbmin 

jOm y1'2 - f dy F ~ ( $  ; 2 ; - y) = r(+- E)r(c)/r(+)r(+ + €1. 

In the residual integral, the asymptotic expansion (Dingle 1973) 

lFl(j;  2;  - y )  - 2(ny)-3'2 C r(j++)r(j++)/j!yj 
m 

j = O  

can be integrated to yield 

J X  j = O  

For small E, equation (12) can be reduced by 

r(€) = E - l r ( i + c ) ,  T(a + E) = T(a)(  1 +€$(a) + . . .), (15) 

whereas in equation (14) 

x - ~  = exp(-Elnx) = l - c I n x +  . . . .  (16) 

The E - '  terms cancel. On dropping terms of order E, there remains 
30 

F - h71112x-312 Inx+y+41n2-2-2n- '  r ( j + + ) r ( j + + ) / j j ! x j  
j =  1 

The leading (logarithmic) term agrees with the asymptotic limit of Silin (1965), of course ; 
in fact, his numerical estimate of the next (constant) term is rather good. 
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4. Numerical results 

F was evaluated numerically by summing the series of equation (8) for small to moderate 
x and the series of equation (17) for large x (overlapping for x = 10-30 to verify con- 
sistency). In figure 1 F is displayed as a function of x. 
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Figure 1. Multiphoton correction factor, F, to inverse bremsstrahlung absorption coefficient 
as a function of x ( = EJ2kT) .  
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